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Abstract. The semiclassical contribution of a periodic orbit to the quantum density of states
diverges when the orbit bifurcates. In this case one has to apply approximations which are
uniformly valid both in/ and a parameter which describes the distance to the bifurcation. The
form of the approximation depends on the repetition numbef the orbit that bifurcates. In

a two-dimensional system, the approximations are differentifoe 1 up tom = 5, and for

m > 5 they have the same form as far = 5. In this article, we consider the case > 5

which occurs first when an integrable system is perturbed. A uniform approximation for the
contribution to the spectral density is derived, which in the limit of largeduces to a sum of
semiclassical contributions of isolated periodic orbits.

1. Introduction

Semiclassical approximations describe guantum mechanical quantities in the limitiwhen —
is small in comparison with relevant actions of the corresponding classical problem. For

the quantum density of statégE), the semiclassical approximation is a sum of two terms,

a smooth function which describes the average density of states and an oscillatory function
which is a sum over contributions from the periodic orbits of the classical system. The way

in which the periodic orbits contribute to this sum depends on whether they are isolated or
appear in families.

If the classical system is chaotic then the periodic orbits are typically isolated and their
contribution to the semiclassical level density has been derived by Gutzwiller [1, 2]. If the
classical system is integrable, then the periodic orbits typically appear in tori, and these tori
give a collective contribution to the level density [3,4]. Families related to more general
symmetries can also be treated [5,6]. In general, there can also be families of orbits in
the chaotic case like in the stadium or Sinai billiards, and isolated periodic orbits in the
integrable case like in the ellipse billiard.

There are, however, situations where the semiclassical contributions of isolated orbits
or families of orbits fail to give an accurate approximation to the level density. This is the
case if, close to a periodic orbit, there exist other periodic orbits with an action difference
which is not small in comparison g a situation which typically occurs in a mixed system.
Then there often exists a second small parametegsides: which governs the separation
of the neighbouring periodic orbits. Instead of applying stationary phase approximations as
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is done in the case of isolated periodic orbits one then has to apply approximations which
are uniformly valid ine andh.

A generic situation in mixed systems where the semiclassical approximation fails is
when a bifurcation of an orbit occurs. We discuss this case by considering Gutzwiller's
semiclassical contribution of an isolated stable periodic orbit with repetition number
the level density of a two-dimensional system:

S,(E) _ mv,

in($®)
g,y = LB ) 1 TE) s )

Thom J|TtM, — 2| ~wh om 2sin(%Y)

HereT, (E), S, (E), M, andv, are the period, action, monodromy matrix and Maslov index
of the orbit, respectively. The second form in equation (1) follows from the fact that the
monodromy matrix}, of a stable periodic orbit has eigenvalugs, = exp(+ix,) and its
Maslov index is given by, = 2[%] + 1. In terms of the quantities of the primitive orbit
T,(E) = mT, ,(E), S,(E) =mS, ,(E) and M, = (M, ,)". At a bifurcation of the orbit

the anglex, has valuesy, = ma, , = 2mn, for integern, and expression (1) diverges.
This is due to the fact that equation (1) is derived under the assumption that the orbit is
isolated, which is not correct at the bifurcation. The way in which the contributjg¢®’)

has to be modified depends on the kind of the bifurcation.

The different forms of generic bifurcations have been classified by Meyer [7] and they
are discussed in [8]. They depend on the smallest repetition number of a periodic orbit for
which the bifurcation occurs. If this numbersis then the bifurcation is a period-tupling
bifurcation, i.e. the primitive periods of the satellite orbits that bifurcate from the central
orbit arem times the primitive period of the central orbit at the bifurcation. koup
to m = 5 generic bifurcations have structures that are different for ewerjor example
the number of orbits before and after the bifurcation are in general different. For higher
repetition numbers: > 5 the bifurcations follow the same pattern as #or= 5: a stable
orbit bifurcates into two satellite orbits, one stable and one unstable, and a central stable
orbit.

By a transformation to normal form coordinates, Ozorio de Almeida and Hannay derived
uniform approximations for the contributions of orbits near generic bifurcations [9] to the
level densityd (E). For the cases: < 4 their results were given by diffraction catastrophe
integrals. For the case > 5 they derived a uniform approximation in terms ofaBessel
function and a Fresnel integral. We will restrict ourselves in the following t& 5, which
is the case that occurs first when an integrable system is perturbed. The approximation of
Ozorio de Almeida and Hannay far > 5 is valid in the vicinity of the bifurcation, but
it does not extend to the limit of contributions of isolated periodic orbits for larger values
of ¢ = o, — 2mn, i.e. further away from the bifurcation. In the present article a uniform
approximation is derived which has this correct limit. The result is obtained by a variation
of the method of Ozorio de Almeida and Hannay and by the inclusion of higher-order
terms. The article is organized as follows. In section 2 the transformation to normal form
coordinates is performed. In section 3 classical properties of the satellite orbits are derived
from the normal form expansion. In seatid a uniform approximation is applied and the
contribution to the trace formula is derived, and section 5 contains a short summary.

Another example for the failing of the semiclassical approximation is the break-up of
the tori of an integrable system when the system is perturbed. By applying a uniform
approximation, Ozorio de Almeida showed how the torus contributions to the level density
have to be modified for small perturbations [10]. For systems with a broken continuous
symmetry a corresponding formula was obtained by Creagh [11]. In recent work by
Tomsovic, Ullmo and Grindberg the results of Ozorio de Almeida were extended in order
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to obtain a formula which has the correct limits as the perturbation is increased [12, 13].

2. Transformation to normal form coordinates

The derivation starts from the semiclassical approximation to the Green function for a
two-dimensional conservative system which is given by [2]

1 i i
"x By~ — D _S,(x',x, E) — — 2
G, x, E) iﬁ«/ﬁzy:‘” y|exp{hsy(m,m, ) Zvy} )

where the sum runs over all classical trajectories oo x’ at energyE. The actions,
along the trajectories is defined as

S, (@, , E):/p-da: )

14

and it obeys generating function conditions relating final coordinétésp’) and initial
coordinateqx, p)

s, 3s, 3s,
pr— _— = — _— = 4
ow P ow P OE “)
D, is the determinant of a matrix of second derivativesSpf
ER 328,
D, = det ox’ox OJx/0F )
928, 92S,
JEox dE?

andv, is the number of conjugate points along the trajectarffor fixed energy).
The spectral density is obtained from the Green function by

d(E) = Zé(E —E,) = —% Im / d’x' d?x 8(x' — 2)G(x', x, E). (6)

In the derivation of Gutzwiller's trace formula two of the integrals are evaluated by an
integration over thé-function. The remaining two integrals are evaluated in the vicinity of
periodic orbits by choosing local coordinates= (z, y), wherez is the coordinate along a
periodic orbit andy is the coordinate perpendicular to it. The integral oyas evaluated
in stationary phase approximation and the integral avisrthen an integral over a constant.
In this way one obtains a sum of contributions of isolated periodic orbits.

We now consider the contribution of a bifurcating orbit with repetition nuniéo the
level density. Also in this case the local coordinateandy are introduced. The variabte
is a periodic coordinate with peridgd/m wherel, is the length of the orbit. The conditions
E = constant and. = constant define local Poin@ssurfaces of section in phase space,
and the actiors,, is the generating function for theth iterate of the Poinc&rmap:

aS aS
L=p, =
dy : dy
Near the bifurcation thenth iterate of the Poincarmap is close to the identity [8]. The
identity transformation, however, cannot be generated by a generating function which

depends on final and initiap-coordinates. Instead one has to use a mixed coordinate—
momentum representation. This can be done by starting with the Green function which

= —Dy- (7)
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is locally represented in a coordinate—momentum representation. One arrives at the same
result, if one replaces one of the delta-functions in (6) by

S(v — Zi Ood er Py (=) 8
O'=N=5= Py (8)

and evaluates the integral overin stationary phase approximation. Then the contribution
from the vicinity of the orbit to the level density is given by

V15,1

d,(E) ~ 2Re/ dz dy'dp, (e

h

i ’o i ! i7T~
exp ﬁSy(z,y,z,py,E)—:y Dy — 5 Vy

where the new generating functidh is the Legendre transform o,
S)/(Z/’y/vz’pva):S]/(Z/vy/vzvyv E)+ypy (10)

and the value of is taken at the stationary poiat, /dy + p, = 0. D has the same form
asD in (5), with the replacementS, — Sy, ' — (Z/,y) andx — (z, py).
The exponent in (9), when considered as a function’aind p,, has stationary points
at the central orbit as well as at the satellite orbits. A stationary phase approximation would
yield a sum of semiclassical contributions of these orbits which diverge at the bifurcation.
In order to obtain a non-divergent uniform approximation for the joint contribution
of these orbits one has to expand the action around the central orbit in higher order. In
general, this results in a complicated expansion in the variablgsand p,. The integrals
can be considerably simplified by a canonical transformation of the coordinates and by
using the fact that the form of equation (9) is semiclassically invariant under canonical
transformations, i.e. if one replaces the old coordinates in (9) by new canonical coordinates

(Z7pzayapy)_)(zv PZ7Y7 PY) (11)

and the generating functiofs‘uy by the generating function for the new coordinates, then a
stationary phase approximation for the integrals gives the same result as before. This follows
from work of Miller [14] and is discussed by Littlejohn [15]. There is a restriction to the
above statement. It is true as long as there are no bounds on the new coordinates. If the
new coordinates are bounded then there are modifications as is discussed in the following.

The most simple form that the generating function can take near the bifurcation is
given by the normal form. Ozorio de Almeida and Hannay performed the transformation
to the normal form in order to obtain the contribution of orbits close to a bifurcation [9].
The subject of the present work is to obtain an approximation which has the right limit
as one moves away from the bifurcation. For that purpose, higher-order terms have to be
included in the expansion. The transformation is described in appendix A and it results in
the replacement

SV(Z,’ y,7 2, py’ E) - pyy/ g SV(Z,’ CD/, 2, 17 E) - Iq)/ (12)
where$, is of the form
S, @, 2, 1, E)lympyr, = So(E) + S, @', E). (13)

So(E) is the action along the central orbit and the expansion of the generating fuisction
for mth iterate of the Poincérmap withm > 5 is given by
m—2 [%]_2
S, @ E)y=1d —¢el — Z eI’ — a, 177" sinm®’). (14)
v=2 v=0
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Heree = ap — 2nrn = mag, — 2wn is a parameter which is zero at the bifurcation,
and the index 0 denotes quantities of the central periodic orbiand ® are canonical
polar coordinates. The expansion is carried out up to oftle? since in all lower-order
approximations the two satellite orbits have the same semiclassical amplitude as will be
shown in the next section.

It is important to note that the transformation to tlie and ®-coordinates is a
semiclassical transformation since the quantization of the angle coordindeads to
difficulties. Due to the periodicity of the anglé®, the quantum mechanical operator
corresponding ta/ has a discrete spectrum. From its fodm= (P2 + Y?)/2 in terms
of unbounded canonical coordinatésand Py (see appendix A) it follows that its spectrum
is that of the harmonic oscillatat, = (n + 1/2)k, for 0 < n < oo. On the other hand, it is
not possible to define a Hermitian operator corresponding to the phasece this leads
to contradictions [16]. In the semiclassical approximation, however, it is still possible to
work with 7 and ® coordinates if one restricts integrations overto a range of 2 and
replaces integrations ovérby

/ dr >ny (15)
I,

as discussed in [17]. In this way one obtains the following expression for the contribution
to the spectral density

Ly /m
d, (E) szefO dz/ do’ Z (2nh)2‘/

n=0

xexp{ So(E) + — S(In,CD E)— _1 c1>/—”27u} (16)

As a consequence of the transformation to normal form coordinates the integrand of the
integrals in (16) no longer depends enand thez-integration can now be done trivially.
Furthermore, the determinadit, can be reduced to the following form (see discussion in
[15]):

928, 925, 928,
07'0z d0z’01 07'0FE

2Q 2Q 23 1 aZS
0?8, 9%, %5, [_1 95 a7)
009z 0PI IPIE 'z 9901

928, 925, 9%,

9Edz OEJIl  JEJE

D, = det

Herez andz’ are the velocities in the transformed system which are in general not identical
to those of the original system. For a periodic otbit 7z’ and

/l/m [1 135 T(¥, 1, E) (18)
7'z maE_ m

whereT is the time fromz to z” along the orbit. This is also true for non-periodic orbits
within the approximations for the exponential prefactor that will be discussed in the next
section and in appendix C.
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After integration overz; and an application of the Poisson summation formula for the
sum overn one obtains

= 198, | 925 |2
d,(E) ~ 2Re do’
o LZ_:OO/ / (Znh)zmaE a0
i I 1
xexp{ So(E) + = S(I ' E) — —Id>/ 2v+2n|(h Z)L}. (19)

Due to the coordinate transformation to polar canonical coordinates the form of the
semiclassical approximation has changed in comparison with (9). The origin of the
coordinate system is not a stationary point any more. Instead, the Gutzwiller contribution
of the central orbit can now be obtained by a summation dvef the contributions from
the boundaryl = 0 of the I-integration. The semiclassical contributions of the satellite
orbits are contained in the = 0 term. All other termd. # 0 have no stationary point near
the origin, and they contribute semiclassically only with a boundary contribution.

3. Properties of the satellite orbits

Before continuing with the further evaluation of the integrals we consider properties of
the satellite orbits that can be obtained from the normal form expansion of the generating
function (14).

The stationary points of the exponent in (19) foe= 0 are determined by

39S gz
I=o=1- Z a,ml? ™ cogm®’)
. (20)
N g2
o= = —e—Zvc o Z ( +v)12+” Lsin(md').

The first equation is solved by a@sd’) = 0, and the second equation then determines
the value of I at the stationary points. There are altogether Z2olutions of the
equations (20);n solutions with sittn®’) = 1 correspond to the satellite orbit which
is labelled by 1 in the following, and: solutions with sitim®’) = —1 correspond to the
satellite orbit labelled by 2.

It will be convenient for the following calculations to solve the second equation in (20)
for I as a function ofd’ and insert the values @b’ at the stationary points at the end. The
solution can be expressed as a sum over powersupf to ordere”3:

m—2 [3]1-2
@)=Y ¢+ Z a3z Lsin(md) + byg" 2 cog(md)  (21)
v=2
where the definition fo€ and the first coefficients in the three sums are given by

A & , , aom , aém2 m

f=0 =1 4% ==". bo__16c§<§_1>' (22)

From the leading term in (21) it follows that* is positive if ¢ > 0, i.e. the satellite

orbits are real for positivé. Figure 1 shows the stationary points$fl, &', E) — I ®’ for

m = 5 together with a contour line. The dots correspond to the stable periodic orbits and
the crosses to the unstable periodic orbit. The satellite orbits are each represented by five
stationary points since they cross the Poiécsection of surface five times.
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Figure 1. The positions of the periodic orbits in the Poineaection of surface far < 0 (left)
andé > 0 (right), and a contour line of (1, @', E) — [®'.

Inserting the valud = I* into the functionS(Z, ®’, E) one obtains

m—2 [%]*2
SU*, @ E)=1"0'+ ) 2"+ Y a&?™ sin(m®’) + bge"~*coS (md) (23)
v=2 v=0

v

where the first coefficients in the sums are given by

2 2
asm
" " 7 0
cHy =0 ay = —ag by = — . (24)
2 0 0 16¢,

From (23) the expansions of the actions of the satellite orbits are obtained:

Sj_,z(E) = [SO(E) + S(I*7 CD/’ E) - I*CD,]Sin(mCD’):il

= S(E) + AS(E) (25)
where

_ S\(E + So(E m—2 .

S(E) = w = So(E)+ Y _c/&"
[41-2 V=z (26)

E) — So(E 2

AS(E) = S1(E) ; S2(E) _ a8,

v=0

It follows that S1(E) — So(E) and So(E) — So(E) are both of orders? whereas
S1(E) — So(E) is of orderéz. As ¢ is increased, the differences of the actions of the
satellite orbitsS;(E) and S,(E) thus increase more slowly than the difference between
either one of them andy(E). In the following we assume without loss of generality that
ap < 0 since a rotation of the coordinate systemsbyn changes the sign afp. Then
AS(E) > 0 andS1(E) > S2(E) for positivee.
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Here we also give the expansions of several derivatives(bfd’, E) for I = I*:

[H‘I] 2
a5
= Z @2+ " P2t tsinmd’) + beY8" 3 coS(md)
OE I=I1* v=2 v=0
aZS = 4 2 4 2 4 —4
e Zc“” + Z a®e2 T2 s5in(md’) + by "4 cof(md’)
I=I*
27
aZS [m] ? 5 1 (5) 3 ( )
=1 ®22 =1 cogm®’) + by 8™ 3 sin(m @) cogm @’
Y X g + ; a, (mP’) + (m®) cogmP’)
028 e ©6) am—2
LY Am /
02| . = ;a g2+ sin(m®’) + b Sirf(md")

and the first coefficients in the sums are given by

O _ 9% 4@ _ dom oo O _ agm? (m B ) dog
B 2

2 IE 90T 4, 9E ° 7 1673 9E

g =) WG

2 2 3 (28)

5 _ aom b(s) _ agm m 1
agy = ——4— g = —— (= —

2 8c, \2
2. 4

(6 2 (6) apn
an’ = agm by =— .

o = 0 8¢,

From the expansions in (27) the traces of the monodromy matrices of the satellite orbits
are obtained as

et (5 A I
2=\ 5100’ 919D 919D 912 dd2 ,
I=I*,sin(m®’)=+1

B [ REN 825:|
812 8(13/2 I1=I*sin(m®)=+x1
[3]-2

- [ Z aPe%+ sinma’) + by &"~ 2S|n2(md>’)} (29)
v=0 sin(m®’)=+1

where
2.3
o = 2apcom? D — _%_ (30)

For both satellite orbit§Tr M — 2) is of order orderé2 and it is determined only up
to a relative order ofz —2 with respect to the leading term. For that reason, the amplitude
in the semiclassical approximation (which is a limit of the present uniform approximation)
is only valid within this relative order of. In all following calculations it is therefore
sufficient to expand the exponential prefactor in all integrals only up to drelef.

The difference in the values ¢flr M — 2| for the two satellite orbits is of ordey”—2.
This is why the expansion in (14) had to be carried out up to oftle? since in a lower
order the two satellite orbits have the same semiclassical amplitude.
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From the expansions of T, and S12(E) one can obtain relations between the
stabilities and actions of the satellite orbits. For example,

TrMy,—2 2 AS(E
fim (TM1272 Ty, ASE) (31)
e—0 2 2 e>0g272[S(E) — So(E)]
and
TrM+TrM;—4 3 AS(E)]?
jim (M1 TTM2 =4 m™ o [ASE)] . (32)
£—0 gm—2 4 e—0em—4[S(E) — So(E)]?

Note that equations (31) and (32) are expressed in termasaofl notz.

4. The contribution to the level density

We continue now with the further evaluation of the integrals in (19). IFef 0, the integral

over I has a stationary point near the boundary 0 of the integral, and for that reason

it cannot be evaluated by a stationary phase approximation. Berry and Tabor derived a
uniform approximation for this case [3] which can be written in the form [18]

* i gU™)2miBh i ;e i . *© 1 sy
dr g(nHer/ D = S22 VT Pl en FUD | @ (1%) 4+ —Slgl"(l*)/ dx ez
/0 VI 2n A X2
120 o
i f(0)

where I'* is determined byf’(I*) = 0, 8 = sign(f”(I*)) and A = \/ﬂ%(.f(O) — fI®)).
®(I) denotes the Heaviside theta function. The terms on the right-hand side of (33) have
the following interpretation: the term multiplying th@-function is the stationary phase
approximation of the integral, the last term is the contribution from the boundary (which
can be obtained by an integration by parts), and the remaining term is an interference term
between the two.

The approximation (33) is applied to tiieintegral forL. = 0. ForL # 0 thel-integrals
give only a boundary contribution which is given by the last term on the right-hand side of
(33). The result is

(33)

V2R 103, Ly |
(2rh)? m JE |53

2
d,(E) =~ 2Re/ do
0

x exp{ %E(E) + %AS(E) sin(m®') + %bgé’"‘z cod(md') — ”ZTU}

N IIB . N o , 1 ingz
x[®(5)+,/2n5|gn(s) /;\ dx ﬁe ]+do(E) (34)

where = — sign(cz) and A’ = \/ﬂ—ZE(I*CD/ — S(I*, @', E)). The termdp(E) is the sum of
the boundary contributions and it is identical to the semiclassical contribution of the central
stable periodic orbit:

_ X 2r To(E) (=D i i
do(E) = 2ReL=Z_Do 2 m ih_g — % exp{ESo(E) — zv}

_ 1 ToE) sin{%E) — Ty 4 7n)
Th m 2sin%

(35)
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where the relation

1 &
sinz) kZ 7 —mk (36)

has been used [19]. A comparison of (35) with (1) shows that2: (modulo 4).

The remaining integral ove®’ can be performed after a change of the angle variable.
The details are given in appendix B, and the integral results in

d,(E)~ @(5)% ZnA_S(E)JO (AS_(E)) COS(S(_E) _mu ‘,2)>

h h h 4
~AA 27 AS(E) AS(E) S(E) wvi4+v,—2)
+O(e)ﬁ A J1 ( A ) cos( — — 2 )

—Sign(é)% |ASE(E)|/A dx /3(}—(21)" sin(S(EE) +gxz)

1 To(E) . [So(E)
+?E2msin(‘i;) sm( - > (37)
wherevi =2n — (8 —1)/2, vo=2n— (B+1)/2, A = \/ﬁiﬁ[so(E) — S(E)], and
i 1[ Ti(E) T2(E) }
2l TTML =2 J|TrM,—2]| (39)
AA — 1 |: Ti(E) _ T>(E) :|
2 J/ITrMy =2 J/|TrM, =2

This is the final result of this paper. Itis an approximation which is expressed completely
in terms of the periods, actions, stabilities and Maslov indices of the three periodic orbits
which are involved in the bifurcation. The first two terms on the right-hand side are the
joint contributions of the two satellite orbits. The third term is an interference term between
the central orbit and the satellite orbits and the last term is the Gutzwiller contribution of
the stable central orbit. In billiard systems there also exists an alternative form of (37) as
discussed in appendix D.

In comparison with the result of Ozorio de Almeida and Hannay, which is valid near
the bifurcation, equation (37) contains the following extensions: Jferm which is
obtained by including higher-order terms in the normal form expansion, the full Gutzwiller
contribution of the central orbit which is obtained by summing also overtb€0 terms,
and the periods of the satellite orbits which are obtained by expanding the whole exponential
prefactor in powers of. A further difference is that in the formula of Ozorio de Almeida
and Hannay the interference term is multiplied bygaBessel function. Thig/y-term was
obtained by an evaluation of th®’-integral and a subsequent evaluation of fhimtegral
in which the Jo-term was considered as part of the exponential prefactor, an approximation
which is valid only near the bifurcation.

As discussed in appendix B, the definition df and AA in terms of the periods
T1(E) and T>(E) was somewhat ambiguous since both periods are identical in the present
approximation. In order to see that the dependence on the periods is correct, one has to
expand the action in one order higher (for scale-invariant systems one has to include even
two orders more sinceod/dE = 0). In appendix C the derivation is done by including
one order more for the case > 7. One then arrives exactly at the same result (37) with
the previous definitions of and AA. For the cases: = 5 andm = 6 the calculations are
more elaborate and are not done here.
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Formula (37) can also be applied to repetitions of the primitive periodic orbit with
repetition numbers:’ which are a multiple ofz, as long as these repetitions do not undergo
further bifurcations. The only difference is that in the definitionsAoind A A, the periods
T, and T, have to be replaced by the primitive periods of the satellite orbits, and im{37)
has to be replaced by’ andn by nm'/m.

We now discuss different limits of the formula (37), first e 0. If AS/h > 1 and
|So — S|/A > 1, i.e. if one is sufficiently far away from the bifurcation, then the Bessel
functions can be replaced by their leading asymptotic terms

/|2 [ 2 3
Jo(z) ~ p— COS(Z — %) Ji(z) ~ e COS(Z — Z) 7 —> 00 (39)

and the interference term is of ordersmaller than the other terms and can be neglected.
Thend, (E) is a sum of semiclassical contributions of the three isolated orbits

dy(E) ~

+
]

1  To(E) sin<SO(E)> 2 L(E) os(Si(E)—nvi) (40)
¢ .

mh 2m sin(%) = why/|Tr M; — 2]

h 2
In the other limit whenAS/h « 1, i.e. near the bifurcation, the Bessel functions can
be replaced by their value at zero argument. This yields

d,(E) ~ @(é)ﬂ% Z”AES(E) cos(s(}_f) —wn+ ”f)

A IAS(E)| [, B=D"  (S(E) B,
—S|gn(s)ﬂ7_l = /AdX 12 sm( 7 +2X)

1 To(E) sin(SO(E)>
7h 2m sin(g) o)

+ (41)

This is exactly the form that is obtained for an integrable system when a new torus
arises through a stable orbit of the system [18], i.e. it is the contribution of a torus, a stable
orbit and an interference term between both. The two satellites thus contribute near the
bifurcation to the level density as if they would form a torus [9]. This is a consequence of
the fact thatAS(E) is of lower order iné thanS(E) — So(E), i.e. the values of the actions
of the satellite orbits separate more slowly from each other than each of them separates
from the action of the central orbit.

In the limité — 0 the contributions of the central orbit and the interference term diverge,
but their sum remains finite. This can be seen by integrating the interference term by part
which yields two terms. One of them cancels the divergence of the central orbit (this can
be seen by using (31)), and the other term gives minus one-half the torus contribution. As
a consequence, the whole approximation in (37) is continuods=al0, and the value of
d,(E) for ¢ = 0 is given by

_ To(E) 1 So(E) p
d,(E) = - \/TW cos( = n+ 4 ) (42)

For negative values df the satellite orbits are complex and contribute only through the
interference term. In contrast to the case- 0 their contribution does not split as¢ is
increased. Their contribution is like that of a complex torus.
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5. Summary

In contrast to unstable periodic orbits, stable orbits cannot be considered as being isolated.
If the stability of the orbit changes by an arbitrarily small but finite amount, for example
by changing the energy or an external parameter, then the orbit bifurcates infinitely many
times. This is the case, since in a generic situation a bifurcation occurs every time when
the stability anglex, , is a rational multiple of 2.

As a consequence, Gutzwiller's approximation for the contribution of a stable orbit
to the quantum density of states fails when summed over all repetition numbers, since it
was derived under the assumption that the orbit was isolated. A remedy to this situation
lies in the fact that different bifurcations are separated by the different repetitions of the
primitive periodic orbit. Ifa, , = 27, wheren andm are relatively prime, then the
Gutzwiller approximation diverges for thath repetition of the primitive periodic orbit
(and also for repetition numbers which are a multipledf The corresponding bifurcation
is a periodm-tupling bifurcation, which can be considered as a bifurcation of rittle
traversal of the primitive orbit. The Gutzwiller approximation has to be changed only for
those repetition numbers, which are close to a bifurcation. For these cases, one then has to
apply uniform approximations which result in a common contribution of all orbits which
take part in the bifurcation. In the present paper, a uniform approximation is derived for
generic bifurcations witln > 5. This uniform approximation has the property that it yields
the Gutzwiller contributions when one moves away from the bifurcation.
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Appendix A. The normal form for the generating function

The motion in the vicinity of a periodic orbit can be described in a reduced system. In
this system the coordinate along the orbit is the new time variable and the reduced
Hamiltonian is given by the functior = —p, whose functional form is defined implicitly
by H(p., py,z,y) = E [20]. From the equations of motion of the original system it follows
that
dy oF dp, OF dF 9F
dz  ap, dz 9y dz 9z’

In this way the original two-dimensional autonomous system is reduced in the vicinity of a
periodic orbit to a one-dimensional time-dependent system with periodic time dependence.
In the reduced system the energyis only a parameter.

The system can be further simplified by a canonical transformation to the normal form
of the reduced Hamiltonian system. This is done by expanding the reduced Hamiltonian
around the origin in a combined Taylor expansion in the variaplesd p, and Fourier
expansion in the periodic time variahte

By a canonical transformation of the coordinates of the reduced system it is then possible
to remove most of the terms in this combined expansion. An exception to this rule are terms
which meet a resonance condition that is dependent on the stability of the orbit. The method
is described in detail in the book of Ozorio de Almeida [8], and for that reason here we

(A1)
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only give the result. For the case of a stable orbit close to a petitapling bifurcation
with m > 5 one obtains for the expansion up to ord&r2:

m—2 [2]1-2 [z]1-2
F=81+Y &I"+ ) dI3"sinm®) + Y &,I5" cogmd) (A2)
=2 v=0 v=0

where I and ® are canonical polar coordinates. The transformation to the normal form
is done in several steps and the canonical polar coordinates are introduced in the last step
Py = /21 cos®, Y = /21 sin® whereY and Py are unbounded canonical coordinates.
As can be seen from (A2) the Hamiltonian no longer depends. on
The generating function for the transformation from the initial point of a trajectory
(I, @) atz to a final point(Z’, @) atz’ has a very similar form:

m—2 [3]-2 [3]-2
SU O E)=10 —el = ¢,I" = Y d, 1?7 sinm®) — Y e,I?" cosmd’).
v=2 v=0 v=0

(A3)

This can be seen, for example, by integrating iteratively the equations of motidnaiod

@ (up to the relevant order im). By a further canonical transformation which consists of
an I-dependent shift of the angle coordingtethe cosine-dependent terms can be removed
and one obtains

m—2 [%]_2
SU, ®,E)=1d—¢l — chl" — a, 177" sin(m®) (A4)
v=2 v=0

wheree = mag , — 2nn whenz' =z +ml,.

We end this section with a discussion of the kind of canonical transformations that are
involved in changing the representation fr@m p,)-coordinates ta®, 7)-coordinates. In
the reduced system the transformation is a time-dependent canonical transformation which
changes the energyp, of the reduced system. In the original system, the transformation to
normal form coordinatesz, p., y, py) — (Z, P,, ®,I) is an energy-dependent canonical
transformation. It does not change thevariable ¢ = z) but it changes the conjugate
momentump, such that the new momentu®, is a constant of motion if one neglects
higher-order corrections to the form (A2). Furthermore, since the generating function for
the transformation depends on the enekgyn general it changes the time along a trajectory.
(The time along a periodic orbit is, however, not changed.) The results of Miller [14] on the
form-invariance of semiclassical approximations under canonical transformations are derived
for the class of autonomous transformations. They can be generalized to the present case by
applying them to an extended phase space, in which energy and time are further canonical
variables. This extended phase space is discussed in [15].

Appendix B. Integration over the angle variable

In this section the integral over the angle variable in (34) is performed. One proceeds in
the following way. First, the integral is simplified by a substitution of the angle variable

/ / b// Al /
P =06 _mT(Z”” 2cogm®) (B1)
0
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which removes the quadratic cosine term in the exponent:

21 do’ 1 85 | |% _ . . .
d,(E) ~ Re do’ do’ 9139’ e%S(EH—%AS(E)Sin(m(—)’)—%v+"%ﬁ

0 J2(xh)3m dE 12252

x[®(5)+,/ 5|gn(s)/ dx’ exz] + do(E). (B2)

Then the exponential prefactor is expanded in poweré op to orderé2—2 as has been
discussed in section 3. In this approximation the only combination which is angle-dependent
is

1

2

do’ |28
~ B + C sin(m®’) (B3)

der [a12
where B and C are given by expansions in powers &f Both constants can be expressed
in terms of classical quantities by noting that

d(SU*, &, E) — I*
:szAS(E)=|: (S( /2) )i|
de sin(m®’)=+1
328 [ dd"\?
[ ] | o
I=I*sinm®)=+1
This relation and the second line of (29) can be used to réfated C to AS(E), Tr M,
and TrMo:
328 (de"\? m?|AS(E)|
TrMyp—2 = |— 2AS(E =" B5
| Tr My — 2| 812<d<1>/> m°AS(E) | (BLC)? (B5)
I=I*sin(m®)=%1

which determines the values & and C. The integral expression faf, (E) then has the
following form:

27
d,(E)~ Re/ 4o’ HAS(E)'[A~|—AAS|n(mO)]ehS(E)+ AS(E) sin(m®)— 2 v+ 17
2(h)3
[@(e>+,/ sign(é) f dx’ e“”] + do(E) (B6)

whereA and AA are defined as

i 1 [ T\ (E) T>(E) ]
\/|TI'M1—2| \/|TI'M2—2| (B?)
AA — 1 |: T\(E) B I>(E) } '
\/|TrM1—2| \/|TrM2—2|

In the present approximatiofy(E) = T»(E) and the definition ofA and AA in terms of
these periods is somewhat ambiguous. It can be justified by a higher-order calculation as
is done in appendix C.

In a last step before performing the integral ower the angular dependence of the
boundaryA’ of the X’-integral

A = ﬁ(l*cb/ S(I*, ', E)) = IB—E(SO(E) S(E) — AS(E) sinm®"))
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is removed by the substitutioX = \/X/2+ ZAS(E)sinm®’)]. Within the present
approximation for the exponential prefactor one obtains

o 1 |ﬂ/ 1 3 i ,
/, dx’ X/2 Xz%/A dxﬁ |:1+/3hX AS(E) sin(m® )i| e2X2 AS(E) sinm®’) (B8)

where A = \/FZE[SO(E) — S(E)]. The integral expression (B8) is inserted into (B6) and
results in

AS(E)
2(mh)3

A [IBIAS(E)| [
+ sign(e) Re W/A

27
x / de’ [A + AASin(m®")
0

d,(E) ~ ©(é)Re

/ O’ [A + AA Sin(m®')]er SE+FASEsinme) =5+

3A _ )
BhX?
xerSEEX=GVEEE 4 o) (B9)

which is now in a form in which the integrations can be performed. It results in the final
formula (37).

Appendix C. Calculation in higher order for m > 7

In this section, the derivation of formula (37) is carried out fior> 7 by increasing the
order of the expansion in normal form coordinates by one. Then the periods of the two
satellite orbits are different if the system is generic. As will be shown, the final result (37)
will be the same.

The expansion of the generating functist/, &', E) up to order/™1 is given by

m-1 [3]-1
SU O E)=10 —el =Y ¢, I" = Y a,I?" sinmd). (C1)
v=2 v=0

The stationary points of the integral ové¥ are again determined by des®’) = 0, and
the stationary point*(®’) of the integral over/ can be expanded in powers &fup to
orderg”—2:

m-1 [2]-1
1*(@/):2 revlyp Z a7t 1S|n(m<1>)+Zb’ & =3 cod(md). (C2)
v=2 v=0

In the casesn = 5 andm = 6 there is an additional term of orde® —5, and form =5 a
further term of ordeé?"—".

Inserting the expansion far*(®’) into the expression (C1) for the generating function
S, ¥, E) yields

m—1 [2]-1
SU* @ E)=1"0'+ ) cje"+ Y ajezt sm(mq>)+Zb’“m+” 2cog(m®’) (C3)
v=2 v=0 v=0
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and from this the expansions of the actiofgE) and S>(E) of the satellite orbits are
obtained. They are determined by

=S (E)+Z i

v=2

[5]-1
S1(E) — S2(E %
AS(E) _ l( ) 5 2( ) — a‘/)/

Sy = SO SE) _
(C4)

The following calculations are done as in the main section and in appendix B with
the difference that all quantities in the exponent are now expanded up to &rdeand
all quantities in the exponential prefactor up to ordér®. The exponent in the integral
expression (34) fot, (E) then contains two terms with a quadratic cosine-dependence on
the angle, and these terms are removed by a substitution of the angle variable of the form

1
' =0+ de? " cogm®). (C5)

Again one has

-

2

92s .
~ B + Csin(m®) (C6)

912

do’
de’

where B andC are determined by (B5), but now al$s, /0 E and32S/319®’ depend on
@'. An expansion of the whole exponential prefactor in (B2) up to oéder' results in

2
d,(E) ~ do(E) + Re/ de’ |AS(_E)| [A_ + AAsin(m®") + D cogm®’)]
0 \ 2(zh)3

xerSE; AS“E)S'“(’”@)'"”*”'9[8(8)+,/ 18 S|gr‘(a) dX 'ﬁx/z}
(C7)

whereD = Aa(s“m‘l/z andA andA A are defined as before, but now with an unambiguous

dependence off1(E) and T>(E).
The expression (B8) for the substitution froki to X is not modified in the present
approximation, and one obtains the following result do(E):

A AS(E) 2 ITA H / /
d,(E) ~ do(E) + ©(#)Re, | - —— / dO'[A + AASINMO') + D cogm®’)]
2(h)2 Jo

et SBIHFASESINmO) v+ 8 1 gign ) Re /',3|AS(E)|/ dX
2r
_ . 3A .
X/ d@/ [ A / — 2 / }
0 BhX

TS(E)+“5X2 varwﬁ (C8)

The integral ove®’ yields the same result (37) as in the main section since the integral
over the additional terms in the integrand of (C8) vanishes.
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Appendix D. Billiard systems
The semiclassical contribution of a stable orbit in a billiard system can differ from the
general form in (1). It is given by

1 To(E) cos 42 — 7o)
do(E) = — D1
o) = 2Isin(%9)] (D)

where the angleg contains a contribution af from every reflection on a billiard wall and
the indexyq is

UO:Z[%]+1:I:;10 (D2)

where the brackets denote the integer part afds the number of reflections. Here and
in the following upper and lower signs correspond to Dirichlet and Neumann boundary
conditions, respectively.

It is convenient to define a new angle = «ao — now by subtracting the boundary
contributions fromag. Then the expression fadp(E) depends on whethetg is even
or odd

1 To(E) sin(¥)
mh m 2sin(%)
1 To(E) cos o)
mh m  2cog%)

In the case of eveng, the calculations are done exactly as in the main section, and all
formulae and results are the same whgris replaced bydg.

In the case of odag, the formulae have to be slightly modified: a bifurcation occurs
when &y = (2n + L)z for integern, and ¢ is defined asc = &g — (2n + )w. The
index v is then given byv = 2n 3 1. The final result has the same form as in (37), but
do(E) is now given by the form in (D3) for oddy, the indices of the satellite orbits are
m=2nFl-(—-1/2andv, =2nF1— (B +1)/2, and the sine-function in the integral
expression of the interference term has to be replaced bgasine-function.

no even

do(E) = (D3)

no odd.
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