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Abstract. The semiclassical contribution of a periodic orbit to the quantum density of states
diverges when the orbit bifurcates. In this case one has to apply approximations which are
uniformly valid both inh̄ and a parameterε which describes the distance to the bifurcation. The
form of the approximation depends on the repetition numberm of the orbit that bifurcates. In
a two-dimensional system, the approximations are different form = 1 up to m = 5, and for
m > 5 they have the same form as form = 5. In this article, we consider the casem > 5
which occurs first when an integrable system is perturbed. A uniform approximation for the
contribution to the spectral density is derived, which in the limit of largeε reduces to a sum of
semiclassical contributions of isolated periodic orbits.

1. Introduction

Semiclassical approximations describe quantum mechanical quantities in the limit when ¯h

is small in comparison with relevant actions of the corresponding classical problem. For
the quantum density of statesd(E), the semiclassical approximation is a sum of two terms,
a smooth function which describes the average density of states and an oscillatory function
which is a sum over contributions from the periodic orbits of the classical system. The way
in which the periodic orbits contribute to this sum depends on whether they are isolated or
appear in families.

If the classical system is chaotic then the periodic orbits are typically isolated and their
contribution to the semiclassical level density has been derived by Gutzwiller [1, 2]. If the
classical system is integrable, then the periodic orbits typically appear in tori, and these tori
give a collective contribution to the level density [3, 4]. Families related to more general
symmetries can also be treated [5, 6]. In general, there can also be families of orbits in
the chaotic case like in the stadium or Sinai billiards, and isolated periodic orbits in the
integrable case like in the ellipse billiard.

There are, however, situations where the semiclassical contributions of isolated orbits
or families of orbits fail to give an accurate approximation to the level density. This is the
case if, close to a periodic orbit, there exist other periodic orbits with an action difference
which is not small in comparison to ¯h, a situation which typically occurs in a mixed system.
Then there often exists a second small parameterε besides ¯h which governs the separation
of the neighbouring periodic orbits. Instead of applying stationary phase approximations as
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4716 M Sieber

is done in the case of isolated periodic orbits one then has to apply approximations which
are uniformly valid inε andh̄.

A generic situation in mixed systems where the semiclassical approximation fails is
when a bifurcation of an orbit occurs. We discuss this case by considering Gutzwiller’s
semiclassical contribution of an isolated stable periodic orbit with repetition numberm to
the level density of a two-dimensional system:

dγ (E) = 1

πh̄

Tγ (E)

m

cos
( Sγ (E)

h̄
− πνγ

2

)√|TrMγ − 2| = 1

πh̄

Tγ (E)

m

sin
( Sγ (E)

h̄

)
2 sin

(αγ

2

) . (1)

HereTγ (E), Sγ (E), Mγ andνγ are the period, action, monodromy matrix and Maslov index
of the orbit, respectively. The second form in equation (1) follows from the fact that the
monodromy matrixMγ of a stable periodic orbit has eigenvaluesλ1,2 = exp(±iαγ ) and its
Maslov index is given byνγ = 2[ αγ

2π
] + 1. In terms of the quantities of the primitive orbit

Tγ (E) = mTγ,p(E), Sγ (E) = mSγ,p(E) andMγ = (Mγ,p)m. At a bifurcation of the orbit
the angleαγ has valuesαγ = mαγ,p = 2πn, for integern, and expression (1) diverges.
This is due to the fact that equation (1) is derived under the assumption that the orbit is
isolated, which is not correct at the bifurcation. The way in which the contributiondγ (E)

has to be modified depends on the kind of the bifurcation.
The different forms of generic bifurcations have been classified by Meyer [7] and they

are discussed in [8]. They depend on the smallest repetition number of a periodic orbit for
which the bifurcation occurs. If this number ism, then the bifurcation is a periodm-tupling
bifurcation, i.e. the primitive periods of the satellite orbits that bifurcate from the central
orbit are m times the primitive period of the central orbit at the bifurcation. Form up
to m = 5 generic bifurcations have structures that are different for everym, for example
the number of orbits before and after the bifurcation are in general different. For higher
repetition numbersm > 5 the bifurcations follow the same pattern as form = 5: a stable
orbit bifurcates into two satellite orbits, one stable and one unstable, and a central stable
orbit.

By a transformation to normal form coordinates, Ozorio de Almeida and Hannay derived
uniform approximations for the contributions of orbits near generic bifurcations [9] to the
level densityd(E). For the casesm 6 4 their results were given by diffraction catastrophe
integrals. For the casem > 5 they derived a uniform approximation in terms of aJ0-Bessel
function and a Fresnel integral. We will restrict ourselves in the following tom > 5, which
is the case that occurs first when an integrable system is perturbed. The approximation of
Ozorio de Almeida and Hannay form > 5 is valid in the vicinity of the bifurcation, but
it does not extend to the limit of contributions of isolated periodic orbits for larger values
of ε = αγ − 2πn, i.e. further away from the bifurcation. In the present article a uniform
approximation is derived which has this correct limit. The result is obtained by a variation
of the method of Ozorio de Almeida and Hannay and by the inclusion of higher-order
terms. The article is organized as follows. In section 2 the transformation to normal form
coordinates is performed. In section 3 classical properties of the satellite orbits are derived
from the normal form expansion. In section 4 a uniform approximation is applied and the
contribution to the trace formula is derived, and section 5 contains a short summary.

Another example for the failing of the semiclassical approximation is the break-up of
the tori of an integrable system when the system is perturbed. By applying a uniform
approximation, Ozorio de Almeida showed how the torus contributions to the level density
have to be modified for small perturbations [10]. For systems with a broken continuous
symmetry a corresponding formula was obtained by Creagh [11]. In recent work by
Tomsovic, Ullmo and Grindberg the results of Ozorio de Almeida were extended in order



Uniform approximation for bifurcations of periodic orbits 4717

to obtain a formula which has the correct limits as the perturbation is increased [12, 13].

2. Transformation to normal form coordinates

The derivation starts from the semiclassical approximation to the Green function for a
two-dimensional conservative system which is given by [2]

G(x′, x, E) ≈ 1

ih̄
√

2π ih̄

∑
γ

√|Dγ | exp

{
i

h̄
Sγ (x′, x, E) − iπ

2
νγ

}
(2)

where the sum runs over all classical trajectories fromx to x′ at energyE. The actionSγ

along the trajectories is defined as

Sγ (x′, x, E) =
∫

γ

p · dx (3)

and it obeys generating function conditions relating final coordinates(x′, p′) and initial
coordinates(x, p)

∂Sγ

∂x′ = p′ ∂Sγ

∂x
= −p

∂Sγ

∂E
= T . (4)

Dγ is the determinant of a matrix of second derivatives ofSγ

Dγ = det


∂2Sγ

∂x′∂x

∂2Sγ

∂x′∂E

∂2Sγ

∂E∂x

∂2Sγ

∂E2

 (5)

andνγ is the number of conjugate points along the trajectoryγ (for fixed energy).
The spectral density is obtained from the Green function by

d(E) =
∑

n

δ(E − En) = − 1

π
Im

∫
d2x ′ d2x δ(x′ − x)G(x′, x, E). (6)

In the derivation of Gutzwiller’s trace formula two of the integrals are evaluated by an
integration over theδ-function. The remaining two integrals are evaluated in the vicinity of
periodic orbits by choosing local coordinatesx = (z, y), wherez is the coordinate along a
periodic orbit andy is the coordinate perpendicular to it. The integral overy is evaluated
in stationary phase approximation and the integral overz is then an integral over a constant.
In this way one obtains a sum of contributions of isolated periodic orbits.

We now consider the contribution of a bifurcating orbit with repetition numberm to the
level density. Also in this case the local coordinatesz andy are introduced. The variablez
is a periodic coordinate with periodlγ /m wherelγ is the length of the orbit. The conditions
E = constant andz = constant define local Poincaré surfaces of section in phase space,
and the actionSγ is the generating function for themth iterate of the Poincaré map:

∂Sγ

∂y ′ = p′
y

∂Sγ

∂y
= −py. (7)

Near the bifurcation themth iterate of the Poincaré map is close to the identity [8]. The
identity transformation, however, cannot be generated by a generating function which
depends on final and initialy-coordinates. Instead one has to use a mixed coordinate–
momentum representation. This can be done by starting with the Green function which
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is locally represented in a coordinate–momentum representation. One arrives at the same
result, if one replaces one of the delta-functions in (6) by

δ(y ′ − y) = 1

2πh̄

∫ ∞

−∞
dpy e

i
h̄
py (y−y ′) (8)

and evaluates the integral overy in stationary phase approximation. Then the contribution
from the vicinity of the orbit to the level density is given by

dγ (E) ≈ 2 Re
∫

dz dy ′ dpy

√
|D̃γ |

(2πh̄)2
exp

{
i

h̄
S̃γ (z′, y ′, z, py, E) − i

h̄
y ′py − iπ

2
ν̃γ

}∣∣∣∣
z′=z+lγ

(9)

where the new generating functioñSγ is the Legendre transform ofSγ

S̃γ (z′, y ′, z, py, E) = Sγ (z′, y ′, z, y, E) + ypy (10)

and the value ofy is taken at the stationary point∂Sγ /∂y + py = 0. D̃ has the same form
asD in (5), with the replacementsSγ → S̃γ , x′ → (z′, y ′) andx → (z, py).

The exponent in (9), when considered as a function ofy ′ andpy , has stationary points
at the central orbit as well as at the satellite orbits. A stationary phase approximation would
yield a sum of semiclassical contributions of these orbits which diverge at the bifurcation.

In order to obtain a non-divergent uniform approximation for the joint contribution
of these orbits one has to expand the action around the central orbit in higher order. In
general, this results in a complicated expansion in the variablesz, y ′ andpy . The integrals
can be considerably simplified by a canonical transformation of the coordinates and by
using the fact that the form of equation (9) is semiclassically invariant under canonical
transformations, i.e. if one replaces the old coordinates in (9) by new canonical coordinates

(z, pz, y, py) → (Z, PZ, Y, PY ) (11)

and the generating functioñSγ by the generating function for the new coordinates, then a
stationary phase approximation for the integrals gives the same result as before. This follows
from work of Miller [14] and is discussed by Littlejohn [15]. There is a restriction to the
above statement. It is true as long as there are no bounds on the new coordinates. If the
new coordinates are bounded then there are modifications as is discussed in the following.

The most simple form that the generating function can take near the bifurcation is
given by the normal form. Ozorio de Almeida and Hannay performed the transformation
to the normal form in order to obtain the contribution of orbits close to a bifurcation [9].
The subject of the present work is to obtain an approximation which has the right limit
as one moves away from the bifurcation. For that purpose, higher-order terms have to be
included in the expansion. The transformation is described in appendix A and it results in
the replacement

S̃γ (z′, y ′, z, py, E) − pyy
′ → Ŝγ (z′, 8′, z, I, E) − I8′ (12)

whereŜγ is of the form

Ŝγ (z′, 8′, z, I, E)|z′=z+lγ = S0(E) + S(I, 8′, E). (13)

S0(E) is the action along the central orbit and the expansion of the generating functionS

for mth iterate of the Poincaré map withm > 5 is given by

S(I, 8′, E) = I8′ − εI −
m−2∑
ν=2

cνI
ν −

[ m
2 ]−2∑
ν=0

aνI
m
2 +ν sin(m8′). (14)
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Here ε = α0 − 2πn = mα0,p − 2πn is a parameter which is zero at the bifurcation,
and the index 0 denotes quantities of the central periodic orbit.I and 8 are canonical
polar coordinates. The expansion is carried out up to orderIm−2 since in all lower-order
approximations the two satellite orbits have the same semiclassical amplitude as will be
shown in the next section.

It is important to note that the transformation to theI - and 8-coordinates is a
semiclassical transformation since the quantization of the angle coordinate8 leads to
difficulties. Due to the periodicity of the angle8, the quantum mechanical operator
corresponding toI has a discrete spectrum. From its formI = (P 2

Y + Y 2)/2 in terms
of unbounded canonical coordinatesY andPY (see appendix A) it follows that its spectrum
is that of the harmonic oscillatorIn = (n + 1/2)h̄, for 0 6 n < ∞. On the other hand, it is
not possible to define a Hermitian operator corresponding to the phase8 since this leads
to contradictions [16]. In the semiclassical approximation, however, it is still possible to
work with I and 8 coordinates if one restricts integrations over8 to a range of 2π and
replaces integrations overI by∫

dI → h̄
∑
In

(15)

as discussed in [17]. In this way one obtains the following expression for the contribution
to the spectral density

dγ (E) ≈ 2 Re
∫ lγ /m

0
dz

∫ 2π

0
d8′

∞∑
n=0

h̄

(2πh̄)2

√
|D̂γ |

× exp

{
i

h̄
S0(E) + i

h̄
S(In, 8

′, E) − i

h̄
In8

′ − iπ

2
ν

}
. (16)

As a consequence of the transformation to normal form coordinates the integrand of the
integrals in (16) no longer depends onz, and thez-integration can now be done trivially.
Furthermore, the determinant̂Dγ can be reduced to the following form (see discussion in
[15]):

D̂γ = det



∂2Ŝγ

∂z′∂z

∂2Ŝγ

∂z′∂I

∂2Ŝγ

∂z′∂E

∂2Ŝγ

∂8′∂z

∂2Ŝγ

∂8′∂I

∂2Ŝγ

∂8′∂E

∂2Ŝγ

∂E∂z

∂2Ŝγ

∂E∂I

∂2Ŝγ

∂E∂E


= 1

ż′ż
∂2S

∂8′∂I
. (17)

Here ż and ż′ are the velocities in the transformed system which are in general not identical
to those of the original system. For a periodic orbitż = ż′ and∫ lγ /m

0
dz

√
1

ż′ż
= 1

m

∂Ŝγ

∂E
= T (8′, I, E)

m
(18)

whereT is the time fromz to z′ along the orbit. This is also true for non-periodic orbits
within the approximations for the exponential prefactor that will be discussed in the next
section and in appendix C.
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After integration overz and an application of the Poisson summation formula for the
sum overn one obtains

dγ (E) ≈ 2 Re
∞∑

L=−∞

∫ 2π

0
d8′

∫ ∞

0
dI

1

(2πh̄)2

1

m

∂Ŝγ

∂E

∣∣∣∣ ∂2S

∂I∂8′

∣∣∣∣
1
2

× exp

{
i

h̄
S0(E) + i

h̄
S(I, 8′, E) − i

h̄
I8′ − iπ

2
ν + 2π i

(
I

h̄
− 1

2

)
L

}
. (19)

Due to the coordinate transformation to polar canonical coordinates the form of the
semiclassical approximation has changed in comparison with (9). The origin of the
coordinate system is not a stationary point any more. Instead, the Gutzwiller contribution
of the central orbit can now be obtained by a summation overL of the contributions from
the boundaryI = 0 of the I -integration. The semiclassical contributions of the satellite
orbits are contained in theL = 0 term. All other termsL 6= 0 have no stationary point near
the origin, and they contribute semiclassically only with a boundary contribution.

3. Properties of the satellite orbits

Before continuing with the further evaluation of the integrals we consider properties of
the satellite orbits that can be obtained from the normal form expansion of the generating
function (14).

The stationary points of the exponent in (19) forL = 0 are determined by

I = ∂S

∂8′ = I −
[ m

2 ]−2∑
ν=0

aνmI
m
2 +ν cos(m8′)

8′ = ∂S

∂I
= 8′ − ε −

m−2∑
ν=2

νcνI
ν−1 −

[ m
2 ]−2∑
ν=0

aν

(m

2
+ ν

)
I

m
2 +ν−1 sin(m8′).

(20)

The first equation is solved by cos(m8′) = 0, and the second equation then determines
the value of I at the stationary points. There are altogether 2m solutions of the
equations (20);m solutions with sin(m8′) = 1 correspond to the satellite orbit which
is labelled by 1 in the following, andm solutions with sin(m8′) = −1 correspond to the
satellite orbit labelled by 2.

It will be convenient for the following calculations to solve the second equation in (20)
for I as a function of8′ and insert the values of8′ at the stationary points at the end. The
solution can be expressed as a sum over powers ofε up to orderεm−3:

I ∗(8′) =
m−2∑
ν=2

c′
ν ε̂

ν−1 +
[ m

2 ]−2∑
ν=0

a′
ν ε̂

m
2 +ν−1 sin(m8′) + b′

0ε̂
m−3 cos2(m8′) (21)

where the definition for̂ε and the first coefficients in the three sums are given by

ε̂ = − ε

2c2
c′

2 = 1 a′
0 = −a0m

4c2
b′

0 = −a2
0m

2

16c2
2

(m

2
− 1

)
. (22)

From the leading term in (21) it follows thatI ∗ is positive if ε̂ > 0, i.e. the satellite
orbits are real for positivêε. Figure 1 shows the stationary points ofS(I, 8′, E) − I8′ for
m = 5 together with a contour line. The dots correspond to the stable periodic orbits and
the crosses to the unstable periodic orbit. The satellite orbits are each represented by five
stationary points since they cross the Poincaré section of surface five times.
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Figure 1. The positions of the periodic orbits in the Poincaré section of surface for̂ε < 0 (left)
and ε̂ > 0 (right), and a contour line ofS(I, 8′, E) − I8′.

Inserting the valueI = I ∗ into the functionS(I, 8′, E) one obtains

S(I ∗, 8′, E) = I ∗8′ +
m−2∑
ν=2

c′′
ν ε̂

ν +
[ m

2 ]−2∑
ν=0

a′′
ν ε̂

m
2 +ν sin(m8′) + b′′

0ε̂
m−2 cos2(m8′) (23)

where the first coefficients in the sums are given by

c′′
2 = c2 a′′

0 = −a0 b′′
0 = −a2

0m
2

16c2
. (24)

From (23) the expansions of the actions of the satellite orbits are obtained:

S1,2(E) = [S0(E) + S(I ∗, 8′, E) − I ∗8′]sin(m8′)=±1

= S̄(E) ± 1S(E) (25)

where

S̄(E) = S1(E) + S2(E)

2
= S0(E) +

m−2∑
ν=2

c′′
ν ε̂

ν

1S(E) = S1(E) − S2(E)

2
=

[ m
2 ]−2∑
ν=0

a′′
ν ε̂

m
2 +ν .

(26)

It follows that S1(E) − S0(E) and S2(E) − S0(E) are both of orderε̂2 whereas
S1(E) − S2(E) is of order ε̂

m
2 . As ε̂ is increased, the differences of the actions of the

satellite orbitsS1(E) and S2(E) thus increase more slowly than the difference between
either one of them andS0(E). In the following we assume without loss of generality that
a0 < 0 since a rotation of the coordinate system byπ/m changes the sign ofa0. Then
1S(E) > 0 andS1(E) > S2(E) for positive ε̂.
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Here we also give the expansions of several derivatives ofS(I, 8′, E) for I = I ∗:

∂S

∂E

∣∣∣∣
I=I ∗

=
m−2∑
ν=2

c(3)
ν ε̂ν−1 +

[ m
2 ]−2∑
ν=0

a(3)
ν ε̂

m
2 +ν−1 sin(m8′) + b

(3)

0 ε̂m−3 cos2(m8′)

∂2S

∂I 2

∣∣∣∣
I=I ∗

=
m−2∑
ν=2

c(4)
ν ε̂ν−2 +

[ m
2 ]−2∑
ν=0

a(4)
ν ε̂

m
2 +ν−2 sin(m8′) + b

(4)

0 ε̂m−4 cos2(m8′)

∂2S

∂I∂8′

∣∣∣∣
I=I ∗

= 1 +
[ m

2 ]−2∑
ν=0

a(5)
ν ε̂

m
2 +ν−1 cos(m8′) + b

(5)

0 ε̂m−3 sin(m8) cos(m8′)

∂2S

∂8′2

∣∣∣∣
I=I ∗

=
[ m

2 ]−2∑
ν=0

a(6)
ν ε̂

m
2 +ν sin(m8′) + b

(6)

0 ε̂m−2 sin2(m8′)

(27)

and the first coefficients in the sums are given by

c
(3)

2 = −∂α0

∂E
a

(3)

0 = a0m

4c2

∂α0

∂E
b

(3)

0 = a2
0m

2

16c2
2

(m

2
− 1

) ∂α0

∂E

c
(4)

2 = −2c2 a
(4)

0 = −a0m

2

(m

2
− 1

)
b

(4)

0 = −a2
0m

2

8c2

(m

2
− 1

) (m

2
− 2

)
a

(5)

0 = −a0m
2

2
b

(5)

0 = a2
0m

3

8c2

(m

2
− 1

)
a

(6)

0 = a0m
2 b

(6)

0 = −a2
0m

4

8c2
.

(28)

From the expansions in (27) the traces of the monodromy matrices of the satellite orbits
are obtained as

Tr M1,2 =
[(

∂2S

∂I∂8′

)−1 (
1 + ∂2S

∂I∂8′
∂2S

∂I∂8′ − ∂2S

∂I 2

∂2S

∂8′2

)]
I=I ∗,sin(m8′)=±1

=
[

2 − ∂2S

∂I 2

∂2S

∂8′2

]
I=I ∗,sin(m8′)=±1

= 2 +
[ [ m

2 ]−2∑
ν=0

a(7)
ν ε̂

m
2 +ν sin(m8′) + b

(7)

0 ε̂m−2 sin2(m8′)
]

sin(m8′)=±1

(29)

where

a
(7)

0 = 2a0c2m
2 b

(7)

0 = −a2
0m

3

2
. (30)

For both satellite orbits(Tr M − 2) is of order order̂ε
m
2 and it is determined only up

to a relative order of̂ε
m
2 −2 with respect to the leading term. For that reason, the amplitude

in the semiclassical approximation (which is a limit of the present uniform approximation)
is only valid within this relative order of̂ε. In all following calculations it is therefore
sufficient to expand the exponential prefactor in all integrals only up to orderε̂

m
2 −2.

The difference in the values of| Tr M − 2| for the two satellite orbits is of order̂εm−2.
This is why the expansion in (14) had to be carried out up to orderIm−2 since in a lower
order the two satellite orbits have the same semiclassical amplitude.
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From the expansions of TrM1,2 and S1,2(E) one can obtain relations between the
stabilities and actions of the satellite orbits. For example,

lim
ε→0

(Tr M1,2 − 2)

ε
m
2

= ∓m2

2
lim
ε→0

1S(E)

ε
m
2 −2[S̄(E) − S0(E)]

(31)

and

lim
ε→0

(Tr M1 + Tr M2 − 4)

εm−2
= −m3

4
lim
ε→0

[1S(E)]2

εm−4[S̄(E) − S0(E)]2
. (32)

Note that equations (31) and (32) are expressed in terms ofε and notε̂.

4. The contribution to the level density

We continue now with the further evaluation of the integrals in (19). ForL = 0, the integral
over I has a stationary point near the boundaryI = 0 of the integral, and for that reason
it cannot be evaluated by a stationary phase approximation. Berry and Tabor derived a
uniform approximation for this case [3] which can be written in the form [18]∫ ∞

0
dI g(I )e

i
h̄
f (I ) = g(I ∗)

√
2π iβh̄√|f ′′(I ∗)| e

i
h̄
f (I ∗)

[
2(I ∗) +

√
iβ

2π
sign(I ∗)

∫ ∞

3

dX
1

X2
e

iβ
2 X2

]
−h̄

i

g(0)

f ′(0)
e

i
h̄
f (0) (33)

whereI ∗ is determined byf ′(I ∗) = 0, β = sign(f ′′(I ∗)) and 3 =
√

2
βh̄

(f (0) − f (I ∗)).
2(I) denotes the Heaviside theta function. The terms on the right-hand side of (33) have
the following interpretation: the term multiplying the2-function is the stationary phase
approximation of the integral, the last term is the contribution from the boundary (which
can be obtained by an integration by parts), and the remaining term is an interference term
between the two.

The approximation (33) is applied to theI -integral forL = 0. ForL 6= 0 theI -integrals
give only a boundary contribution which is given by the last term on the right-hand side of
(33). The result is

dγ (E) ≈ 2 Re
∫ 2π

0
d8′

√
2π iβh̄

(2πh̄)2

1

m

∂Ŝγ

∂E

| ∂2S
∂I∂8′ | 1

2

| ∂2S
∂I 2 | 1

2

× exp

{
i

h̄
S̄(E) + i

h̄
1S(E) sin(m8′) + i

h̄
b′′

0ε̂
m−2 cos2(m8′) − iπ

2
ν

}
×

[
2(ε̂) +

√
iβ

2π
sign(ε̂)

∫ ∞

3′
dX′ 1

X′2 e
iβ
2 X′2

]
+ d0(E) (34)

whereβ = − sign(c2) and3′ =
√

2
βh̄

(I ∗8′ − S(I ∗, 8′, E)). The termd0(E) is the sum of

the boundary contributions and it is identical to the semiclassical contribution of the central
stable periodic orbit:

d0(E) = 2Re
∞∑

L=−∞

2π

(2πh̄)2

T0(E)

m

(−1)L

i
h̄
ε − 2π iL

h̄

exp

{
i

h̄
S0(E) − iπ

2
ν

}

= 1

πh̄

T0(E)

m

sin{ S0(E)

h̄
− π

2 ν + πn}
2 sinα0

2

(35)
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where the relation

1

sin(z)
=

∞∑
k=−∞

(−1)k

z − πk
(36)

has been used [19]. A comparison of (35) with (1) shows thatν = 2n (modulo 4).
The remaining integral over2′ can be performed after a change of the angle variable.

The details are given in appendix B, and the integral results in

dγ (E) ≈ 2(ε̂)
Ā

πh̄

√
2π1S(E)

h̄
J0

(
1S(E)

h̄

)
cos

(
S̄(E)

h̄
− π(ν1 + ν2)

4

)
+2(ε̂)

1A

πh̄

√
2π1S(E)

h̄
J1

(
1S(E)

h̄

)
cos

(
S̄(E)

h̄
− π(ν1 + ν2 − 2)

4

)
− sign(ε̂)

Ā

πh̄

√ |1S(E)|
h̄

∫ ∞

3

dX
β(−1)n

X2
sin

(
S̄(E)

h̄
+ β

2
X2

)
+ 1

πh̄

T0(E)

2m sin( α0
2 )

sin

(
S0(E)

h̄

)
(37)

whereν1 = 2n − (β − 1)/2, ν2 = 2n − (β + 1)/2, 3 =
√

2
βh̄

[S0(E) − S̄(E)], and

Ā = 1

2

[
T1(E)√| Tr M1 − 2| + T2(E)√| Tr M2 − 2|

]
1A = 1

2

[
T1(E)√| Tr M1 − 2| − T2(E)√| Tr M2 − 2|

]
.

(38)

This is the final result of this paper. It is an approximation which is expressed completely
in terms of the periods, actions, stabilities and Maslov indices of the three periodic orbits
which are involved in the bifurcation. The first two terms on the right-hand side are the
joint contributions of the two satellite orbits. The third term is an interference term between
the central orbit and the satellite orbits and the last term is the Gutzwiller contribution of
the stable central orbit. In billiard systems there also exists an alternative form of (37) as
discussed in appendix D.

In comparison with the result of Ozorio de Almeida and Hannay, which is valid near
the bifurcation, equation (37) contains the following extensions: theJ1-term which is
obtained by including higher-order terms in the normal form expansion, the full Gutzwiller
contribution of the central orbit which is obtained by summing also over theL 6= 0 terms,
and the periods of the satellite orbits which are obtained by expanding the whole exponential
prefactor in powers of̂ε. A further difference is that in the formula of Ozorio de Almeida
and Hannay the interference term is multiplied by aJ0-Bessel function. ThisJ0-term was
obtained by an evaluation of the8′-integral and a subsequent evaluation of theI -integral
in which theJ0-term was considered as part of the exponential prefactor, an approximation
which is valid only near the bifurcation.

As discussed in appendix B, the definition ofĀ and 1A in terms of the periods
T1(E) andT2(E) was somewhat ambiguous since both periods are identical in the present
approximation. In order to see that the dependence on the periods is correct, one has to
expand the action in one order higher (for scale-invariant systems one has to include even
two orders more since dα0/dE = 0). In appendix C the derivation is done by including
one order more for the casem > 7. One then arrives exactly at the same result (37) with
the previous definitions of̄A and1A. For the casesm = 5 andm = 6 the calculations are
more elaborate and are not done here.
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Formula (37) can also be applied to repetitions of the primitive periodic orbit with
repetition numbersm′ which are a multiple ofm, as long as these repetitions do not undergo
further bifurcations. The only difference is that in the definitions ofĀ and1A, the periods
T1 andT2 have to be replaced by the primitive periods of the satellite orbits, and in (37)m

has to be replaced bym′ andn by nm′/m.
We now discuss different limits of the formula (37), first forε̂ > 0. If 1S/h̄ � 1 and

|S0 − S̄|/h̄ � 1, i.e. if one is sufficiently far away from the bifurcation, then the Bessel
functions can be replaced by their leading asymptotic terms

J0(z) ∼
√

2

πz
cos

(
z − π

4

)
J1(z) ∼

√
2

πz
cos

(
z − 3π

4

)
z → ∞ (39)

and the interference term is of order ¯h smaller than the other terms and can be neglected.
Thendγ (E) is a sum of semiclassical contributions of the three isolated orbits

dγ (E) ≈ 1

πh̄

T0(E)

2m sin( α0
2 )

sin

(
S0(E)

h̄

)
+

2∑
i=1

Ti(E)

πh̄
√| Tr Mi − 2| cos

(
Si(E)

h̄
− πνi

2

)
. (40)

In the other limit when1S/h̄ � 1, i.e. near the bifurcation, the Bessel functions can
be replaced by their value at zero argument. This yields

dγ (E) ≈ 2(ε̂)
Ā

πh̄

√
2π1S(E)

h̄
cos

(
S̄(E)

h̄
− πn + πβ

4

)
− sign(ε̂)

Ā

πh̄

√ |1S(E)|
h̄

∫ ∞

3

dX
β(−1)n

X2
sin

(
S̄(E)

h̄
+ β

2
X2

)
+ 1

πh̄

T0(E)

2m sin( α0
2 )

sin

(
S0(E)

h̄

)
. (41)

This is exactly the form that is obtained for an integrable system when a new torus
arises through a stable orbit of the system [18], i.e. it is the contribution of a torus, a stable
orbit and an interference term between both. The two satellites thus contribute near the
bifurcation to the level density as if they would form a torus [9]. This is a consequence of
the fact that1S(E) is of lower order inε̂ than S̄(E) − S0(E), i.e. the values of the actions
of the satellite orbits separate more slowly from each other than each of them separates
from the action of the central orbit.

In the limit ε̂ → 0 the contributions of the central orbit and the interference term diverge,
but their sum remains finite. This can be seen by integrating the interference term by part
which yields two terms. One of them cancels the divergence of the central orbit (this can
be seen by using (31)), and the other term gives minus one-half the torus contribution. As
a consequence, the whole approximation in (37) is continuous atε = 0, and the value of
dγ (E) for ε = 0 is given by

dγ (E) = T0(E)

m

1√
4πh̄3|c2|

cos

(
S0(E)

h̄
− πn + πβ

4

)
. (42)

For negative values of̂ε the satellite orbits are complex and contribute only through the
interference term. In contrast to the caseε̂ > 0 their contribution does not split as−ε̂ is
increased. Their contribution is like that of a complex torus.
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5. Summary

In contrast to unstable periodic orbits, stable orbits cannot be considered as being isolated.
If the stability of the orbit changes by an arbitrarily small but finite amount, for example
by changing the energy or an external parameter, then the orbit bifurcates infinitely many
times. This is the case, since in a generic situation a bifurcation occurs every time when
the stability angleαγ,p is a rational multiple of 2π .

As a consequence, Gutzwiller’s approximation for the contribution of a stable orbit
to the quantum density of states fails when summed over all repetition numbers, since it
was derived under the assumption that the orbit was isolated. A remedy to this situation
lies in the fact that different bifurcations are separated by the different repetitions of the
primitive periodic orbit. If αγ,p = 2π n

m
, wheren and m are relatively prime, then the

Gutzwiller approximation diverges for themth repetition of the primitive periodic orbit
(and also for repetition numbers which are a multiple ofm). The corresponding bifurcation
is a periodm-tupling bifurcation, which can be considered as a bifurcation of themth
traversal of the primitive orbit. The Gutzwiller approximation has to be changed only for
those repetition numbers, which are close to a bifurcation. For these cases, one then has to
apply uniform approximations which result in a common contribution of all orbits which
take part in the bifurcation. In the present paper, a uniform approximation is derived for
generic bifurcations withm > 5. This uniform approximation has the property that it yields
the Gutzwiller contributions when one moves away from the bifurcation.
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Appendix A. The normal form for the generating function

The motion in the vicinity of a periodic orbit can be described in a reduced system. In
this system the coordinatez along the orbit is the new time variable and the reduced
Hamiltonian is given by the functionF = −pz whose functional form is defined implicitly
by H(pz, py, z, y) = E [20]. From the equations of motion of the original system it follows
that

dy

dz
= ∂F

∂py

dpy

dz
= −∂F

∂y

dF

dz
= ∂F

∂z
. (A1)

In this way the original two-dimensional autonomous system is reduced in the vicinity of a
periodic orbit to a one-dimensional time-dependent system with periodic time dependence.
In the reduced system the energyE is only a parameter.

The system can be further simplified by a canonical transformation to the normal form
of the reduced Hamiltonian system. This is done by expanding the reduced Hamiltonian
around the origin in a combined Taylor expansion in the variablesy and py and Fourier
expansion in the periodic time variablez.

By a canonical transformation of the coordinates of the reduced system it is then possible
to remove most of the terms in this combined expansion. An exception to this rule are terms
which meet a resonance condition that is dependent on the stability of the orbit. The method
is described in detail in the book of Ozorio de Almeida [8], and for that reason here we
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only give the result. For the case of a stable orbit close to a periodm-tupling bifurcation
with m > 5 one obtains for the expansion up to orderIm−2:

F = ε̃I +
m−2∑
ν=2

c̃νI
ν +

[ m
2 ]−2∑
ν=0

d̃νI
m
2 +ν sin(m8) +

[ m
2 ]−2∑
ν=0

ẽνI
m
2 +ν cos(m8) (A2)

where I and 8 are canonical polar coordinates. The transformation to the normal form
is done in several steps and the canonical polar coordinates are introduced in the last step
PY = √

2I cos8, Y = √
2I sin8 whereY and PY are unbounded canonical coordinates.

As can be seen from (A2) the Hamiltonian no longer depends onz.
The generating function for the transformation from the initial point of a trajectory

(I, 8) at z to a final point(I ′, 8′) at z′ has a very similar form:

S(I, 8′, E) = I8′ − εI −
m−2∑
ν=2

cνI
ν −

[ m
2 ]−2∑
ν=0

dνI
m
2 +ν sin(m8′) −

[ m
2 ]−2∑
ν=0

eνI
m
2 +ν cos(m8′).

(A3)

This can be seen, for example, by integrating iteratively the equations of motion forI and
8 (up to the relevant order inI ). By a further canonical transformation which consists of
anI -dependent shift of the angle coordinate8, the cosine-dependent terms can be removed
and one obtains

S(I, 8, E) = I8 − εI −
m−2∑
ν=2

cνI
ν −

[ m
2 ]−2∑
ν=0

aνI
m
2 +ν sin(m8) (A4)

whereε = mα0,p − 2πn whenz′ = z + mlγ .
We end this section with a discussion of the kind of canonical transformations that are

involved in changing the representation from(y, py)-coordinates to(8, I)-coordinates. In
the reduced system the transformation is a time-dependent canonical transformation which
changes the energy−pz of the reduced system. In the original system, the transformation to
normal form coordinates(z, pz, y, py) → (Z, Pz, 8, I) is an energy-dependent canonical
transformation. It does not change thez-variable (Z = z) but it changes the conjugate
momentumpz such that the new momentumPz is a constant of motion if one neglects
higher-order corrections to the form (A2). Furthermore, since the generating function for
the transformation depends on the energyE, in general it changes the time along a trajectory.
(The time along a periodic orbit is, however, not changed.) The results of Miller [14] on the
form-invariance of semiclassical approximations under canonical transformations are derived
for the class of autonomous transformations. They can be generalized to the present case by
applying them to an extended phase space, in which energy and time are further canonical
variables. This extended phase space is discussed in [15].

Appendix B. Integration over the angle variable

In this section the integral over the angle variable in (34) is performed. One proceeds in
the following way. First, the integral is simplified by a substitution of the angle variable

8′ = 2′ − b′′
0

ma′′
0

ε̂
m
2 −2 cos(m2′) (B1)
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which removes the quadratic cosine term in the exponent:

dγ (E) ≈ Re
∫ 2π

0
d2′

d8′
d2′√

2(πh̄)3

1

m

∂Ŝγ

∂E

| ∂2S
∂I∂8′ | 1

2

| ∂2S
∂I 2 | 1

2

e
i
h̄
S̄(E)+ i

h̄
1S(E) sin(m2′)− iπ

2 ν+ iπ
4 β

×
[
2(ε̂) +

√
iβ

2π
sign(ε̂)

∫ ∞

3′
dX′ 1

X′2 e
iβ
2 X′2

]
+ d0(E). (B2)

Then the exponential prefactor is expanded in powers ofε̂ up to orderε̂
m
2 −2 as has been

discussed in section 3. In this approximation the only combination which is angle-dependent
is

d8′

d2′

∣∣∣∣∂2S

∂I 2

∣∣∣∣−
1
2

≈ B + C sin(m2′) (B3)

whereB andC are given by expansions in powers ofε̂. Both constants can be expressed
in terms of classical quantities by noting that

∓ m21S(E) =
[

d2(S(I ∗, 8′, E) − I ∗8′)
d2′2

]
sin(m2′)=±1

=
[

∂2S

∂8′2

(
d8′

d2′

)2
]

I=I ∗,sin(m2′)=±1

. (B4)

This relation and the second line of (29) can be used to relateB andC to 1S(E), TrM1

and TrM2:

| Tr M1,2 − 2| =
∣∣∣∣∣∂2S

∂I 2

(
d2′

d8′

)2

m21S(E)

∣∣∣∣∣
I=I ∗,sin(m2′)=±1

= m2|1S(E)|
(B ± C)2

(B5)

which determines the values ofB andC. The integral expression fordγ (E) then has the
following form:

dγ (E) ≈ Re
∫ 2π

0
d2′

√
|1S(E)|
2(πh̄)3

[Ā + 1A sin(m2′)]e
i
h̄
S̄(E)+ i

h̄
1S(E) sin(m2′)− iπ

2 ν+ iπ
4 β

×
[
2(ε̂) +

√
iβ

2π
sign(ε̂)

∫ ∞

3′
dX′ 1

X′2 e
iβ
2 X′2

]
+ d0(E) (B6)

whereĀ and1A are defined as

Ā = 1

2

[
T1(E)√| Tr M1 − 2| + T2(E)√| Tr M2 − 2|

]
1A = 1

2

[
T1(E)√| Tr M1 − 2| − T2(E)√| Tr M2 − 2|

]
.

(B7)

In the present approximationT1(E) = T2(E) and the definition ofĀ and1A in terms of
these periods is somewhat ambiguous. It can be justified by a higher-order calculation as
is done in appendix C.

In a last step before performing the integral over2′ the angular dependence of the
boundary3′ of the X′-integral

3′ =
√

2

βh̄
(I ∗8′ − S(I ∗, 8′, E)) =

√
2

βh̄
(S0(E) − S̄(E) − 1S(E) sin(m2′))
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is removed by the substitutionX =
√

X′2 + 2
βh̄

1S(E) sin(m2′)]. Within the present

approximation for the exponential prefactor one obtains∫ ∞

3′
dX′ 1

X′2 e
iβ
2 X′2 ≈

∫ ∞

3

dX
1

X2

[
1 + 3

βh̄X2
1S(E) sin(m2′)

]
e

iβ
2 X2− i

h̄
1S(E) sin(m2′) (B8)

where3 =
√

2
βh̄

[S0(E) − S̄(E)]. The integral expression (B8) is inserted into (B6) and

results in

dγ (E) ≈ 2(ε̂) Re

√
1S(E)

2(πh̄)3

∫ 2π

0
d2′ [Ā + 1A sin(m2′)]e

i
h̄
S̄(E)+ i

h̄
1S(E) sin(m2′)− iπ

2 ν+ iπ
4 β

+ sign(ε̂) Re

√
iβ|1S(E)|

4π4h̄3

∫ ∞

3

dX
1

X2

×
∫ 2π

0
d2′

[
Ā + 1A sin(m2′) + 3Ā

βh̄X2
1S(E) sin(m2′)

]
×e

i
h̄
S̄(E)+ iβ

2 X2− iπ
2 ν+ iπ

4 β + d0(E) (B9)

which is now in a form in which the integrations can be performed. It results in the final
formula (37).

Appendix C. Calculation in higher order for m > 7

In this section, the derivation of formula (37) is carried out form > 7 by increasing the
order of the expansion in normal form coordinates by one. Then the periods of the two
satellite orbits are different if the system is generic. As will be shown, the final result (37)
will be the same.

The expansion of the generating functionS(I, 8′, E) up to orderIm−1 is given by

S(I, 8′, E) = I8′ − εI −
m−1∑
ν=2

cνI
ν −

[ m
2 ]−1∑
ν=0

aνI
m
2 +ν sin(m8′). (C1)

The stationary points of the integral over8′ are again determined by cos(m8′) = 0, and
the stationary pointI ∗(8′) of the integral overI can be expanded in powers ofε̂ up to
order ε̂m−2:

I ∗(8′) =
m−1∑
ν=2

c′
ν ε̂

ν−1 +
[ m

2 ]−1∑
ν=0

a′
ν ε̂

m
2 +ν−1 sin(m8′) +

1∑
ν=0

b′
ν ε̂

m+ν−3 cos2(m8′). (C2)

In the casesm = 5 andm = 6 there is an additional term of orderε̂
3m
2 −5, and form = 5 a

further term of order̂ε2m−7.
Inserting the expansion forI ∗(8′) into the expression (C1) for the generating function

S(I, 8′, E) yields

S(I ∗, 8′, E) = I ∗8′ +
m−1∑
ν=2

c′′
ν ε̂

ν +
[ m

2 ]−1∑
ν=0

a′′
ν ε̂

m
2 +ν sin(m8′) +

1∑
ν=0

b′′
ν ε̂

m+ν−2 cos2(m8′) (C3)
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and from this the expansions of the actionsS1(E) and S2(E) of the satellite orbits are
obtained. They are determined by

S̄(E) = S1(E) + S2(E)

2
= S0(E) +

m−1∑
ν=2

c′′
ν ε̂

ν

1S(E) = S1(E) − S2(E)

2
=

[ m
2 ]−1∑
ν=0

a′′
ν ε̂

m
2 +ν .

(C4)

The following calculations are done as in the main section and in appendix B with
the difference that all quantities in the exponent are now expanded up to orderε̂m−1 and
all quantities in the exponential prefactor up to orderε̂

m
2 −1. The exponent in the integral

expression (34) fordγ (E) then contains two terms with a quadratic cosine-dependence on
the angle, and these terms are removed by a substitution of the angle variable of the form

8′ = 2′ +
1∑

ν=0

dνε̂
m
2 −2+ν cos(m2′). (C5)

Again one has

d8′

d2′

∣∣∣∣∂2S

∂I 2

∣∣∣∣−
1
2

≈ B + C sin(m2′) (C6)

whereB andC are determined by (B5), but now also∂Sγ /∂E and∂2S/∂I∂8′ depend on
2′. An expansion of the whole exponential prefactor in (B2) up to orderε̂

m
2 −1 results in

dγ (E) ≈ d0(E) + Re
∫ 2π

0
d2′

√
|1S(E)|
2(πh̄)3

[Ā + 1A sin(m2′) + D cos(m2′)]

×e
i
h̄
S̄(E)+ i

h̄
1S(E) sin(m2′)− iπ

2 ν+ iπ
4 β

[
2(ε̂) +

√
iβ

2π
sign(ε̂)

∫ ∞

3′
dX′ 1

X′2 e
iβ
2 X′2

]
(C7)

whereD = Āa
(5)

0 ε̂
m
2 −1/2 andĀ and1A are defined as before, but now with an unambiguous

dependence onT1(E) andT2(E).
The expression (B8) for the substitution fromX′ to X is not modified in the present

approximation, and one obtains the following result fordγ (E):

dγ (E) ≈ d0(E) + 2(ε̂) Re

√
1S(E)

2(πh̄)3

∫ 2π

0
d2′ [Ā + 1A sin(m2′) + D cos(m2′)]

×e
i
h̄
S̄(E)+ i

h̄
1S(E) sin(m2′)− iπ

2 ν+ iπ
4 β + sign(ε̂) Re

√
iβ|1S(E)|

4π4h̄3

∫ ∞

3

dX
1

X2

×
∫ 2π

0
d2′

[
Ā + 1A sin(m2′) + D cos(m2′) + 3Ā

βh̄X2
1S(E) sin(m2′)

]
×e

i
h̄
S̄(E)+ iβ

2 X2− iπ
2 ν+ iπ

4 β. (C8)

The integral over2′ yields the same result (37) as in the main section since the integral
over the additional terms in the integrand of (C8) vanishes.
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Appendix D. Billiard systems

The semiclassical contribution of a stable orbit in a billiard system can differ from the
general form in (1). It is given by

d0(E) = 1

πh̄

T0(E)

m

cos( S0(E)

h̄
− πν0

2 )

2| sin( α0
2 )| (D1)

where the angleα0 contains a contribution ofπ from every reflection on a billiard wall and
the indexν0 is

ν0 = 2
[ α0

2π

]
+ 1 ± n0 (D2)

where the brackets denote the integer part andn0 is the number of reflections. Here and
in the following upper and lower signs correspond to Dirichlet and Neumann boundary
conditions, respectively.

It is convenient to define a new anglêα0 = α0 − n0π by subtracting the boundary
contributions fromα0. Then the expression ford0(E) depends on whethern0 is even
or odd

d0(E) =


1

πh̄

T0(E)

m

sin( S0(E)

h̄
)

2 sin( α̂0
2 )

n0 even

∓ 1

πh̄

T0(E)

m

cos( S0(E)

h̄
)

2 cos( α̂0
2 )

n0 odd.

(D3)

In the case of evenn0, the calculations are done exactly as in the main section, and all
formulae and results are the same whenα0 is replaced bŷα0.

In the case of oddn0, the formulae have to be slightly modified: a bifurcation occurs
when α̂0 = (2n + 1)π for integer n, and ε is defined asε = α̂0 − (2n + 1)π . The
index ν is then given byν = 2n ∓ 1. The final result has the same form as in (37), but
d0(E) is now given by the form in (D3) for oddn0, the indices of the satellite orbits are
ν1 = 2n ∓ 1− (β − 1)/2 andν2 = 2n ∓ 1− (β + 1)/2, and the sine-function in the integral
expression of the interference term has to be replaced by a±cosine-function.
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